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Linear analysis of dewetting instability in multilayer planar sheets
for composite nanostructures
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Inspired by the recent multifluid system with thickness down to microscopic scale
during thermal drawing for fiber fabrication, we perform the linear analysis of dewetting
instability in multilayer planar sheets. The effects of various physical parameters on the
dewetting instability have been extensively investigated, including van der Waals forces,
viscosities, surface tensions, and thicknesses. As the thickness of the liquid sheet is
reduced down to nanoscales, van der Waals forces become more prominent and lead to
the dewetting instability. For the three-layer case (N = 3), the “para-varicose” mode with
larger thickness perturbations plays a dominant role. For the four-layer case (N = 4), there
are several more complicated unstable modes, and the maximum growth rate (�m) depends
on both fluid properties, and the corresponding eigenamplitudes can switch among various
modes. Particularly, a slowest growth rate (�slow

m ) is identified at a critical thickness of
the cladding layer (Hcr). Additionally, for the relevant applications of fiber drawing, by
changing multilayer structure from N = 3 to 4 through introducing an additional less
viscous sheet, the instability can be enhanced, or, by choosing a suitable thickness of a
less viscous sheet, the instability can be reduced. These results not only shed light on
controlling the dewetting instability by material selection and structure design, but also
provide guidance to achieve functional devices with sophisticated nanostructures either in
a single fiber or in integrated fabrics for large-scale textiles.

DOI: 10.1103/PhysRevFluids.5.083904

I. INTRODUCTION

Liquid sheets are very common in nature at both small scales (such as tear films in eyes) and large
scales (such as the subduction of dense lithosphere into the mantle in geophysics). The breakup of
liquid sheets and the subsequent intriguing patterns are essential for many industrial applications
including chemical combustion, diesel engines, spray cooling, surface coating, medicine, and
microfluidics [1–3]. Oron et al. [1] and Craster and Matar [2] extensively reviewed the research on
the dynamics and stability of thin liquid sheets. Particularly, the stability and breakup of liquid sheets
moving in fluids have been well studied. Dorman [4] and Dombrowski and Fraser [5] experimentally
studied the breakup and drop formation of planar sheets. The linear instability of a planar liquid
sheet with constant thickness moving in a gas ambient was analyzed by Squire [6] and Hagerty and
Shea [7]. It is found that there are two independent modes of unstable waves (an antisymmetric
wave or the sinuous mode, and a symmetric wave or the varicose mode). Moreover, sinuous waves
are more unstable than varicose waves. Li and Tankin [8] and Rangel and Sirignano [9] presented a
more complex picture; the varicose waves have a higher growth rate when the Weber number (the
ratio of inertial and interfacial surface tension forces) is small enough [8] or the density ratio is
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high enough [9]. Brown [10] observed the “curtain coating” process and studied spatial instability
of planar sheets experimentally. Lin [11] made a linear temporal and spatial stability analysis of
a viscous liquid curtain. Lin et al. [12] extended the study to include the effects of an ambient
gas. Ibrahim and Akpan [13] presented a fully three-dimensional linear analysis of a plane viscous
liquid sheet in an inviscid gas medium. The effect of non-Newtonian behavior and ambient gases of
unequal velocities on the instability of a liquid sheet has been also studied [14–17]. Inspired by the
multilayer curtain coating, Dyson et al. [18] investigated the stability of double-layer liquid sheets
under the long-wave assumption and without the surrounding gas effect. Ye et al. [19] complemented
Dyson’s work by including the effect of the surrounding inviscid/viscous gas.

The work cited above studied the instability of a liquid sheet or a double-layer liquid sheet
moving in a gas ambient, where the aerodynamic force generated by the relative velocity between
gas medium and liquid plays an important role [6,8,9]. Thus, the Navier-Stokes equations are
employed in these studies. If the inertia is neglected in the Stokes regime or the liquid sheet is
relatively stationary in the medium, the liquid sheet would be stable since capillary forces (surface
tension effects) always tend to damp out perturbations on the sheet.

Recently, sophisticated multifluid systems have been extensively studied for thermal drawing,
allowing the successful fabrication of micro/nanostructures in fibers and textiles [20–25]. The
typical compatible materials for thermal drawing are pairs of polymer/glass [polyethersulfone
(PES)/As2Se3, and polysulfones (PSU)/Se] together with additional metals and semiconductors,
enabling the achievement of versatile functional nanodevices [23]. During the thermal drawing
process, a designed preform, which is made of several thin glass sheets sandwiched by cladding
polymer, is heated into a viscous state at an elevated temperature and then stretched into an extended
fiber under the applied tension. Generally, the thermal drawing process is extremely stable—the
typical Rayleigh-Plateau capillary instability is suppressed, which has insufficient time due to the
high viscosity (the viscosity of the glass sheet varies from 1 to 105 Pa s, and the polymer viscosity
is about 105 Pa s [26,27]). Hence, the structure and geometry of the cross-section are well preserved
from the initial preform with only a simple scaling down in feature sizes, to the final fiber with the
designed structure (multilayer cylindrical sheets [20–24], or multilayer planar sheets [25]).

However, the instability of thin sheets during the thermal drawing process could still occur,
when the thickness of a thin film is further reduced drawn to nanometer scales (multilayer
cylindrical sheets [26,28], multilayer planar sheets [29]). As the thickness of the As2Se3 sheet in
the PES/As2Se3/PES structure is drawn to less than 10 nm, the As2Se3 sheet evolves into an array
of continuous filaments arranged orderly (for PSU/Se/PSU, Se sheet thickness less than 100 nm),
leading to an intriguing filamentation instability [28,29].

For the typical parameters in the filamentation instability, the associated Reynolds number is
Re � 1 [26,28]. Then the capillary instability with “aerodynamic force” (the relative velocity
between viscous film and polymer layer) for a planar sheet [6] is irrelevant for the observed
instability, and another destabilizing factor should be considered. It is noted that the initial thickness
of thin films is decreased down to hundreds of nanometers during the thermal drawing process and
becomes reminiscent of the spinodal dewetting phenomenon. In the dewetting regime, a liquid
film is subjected to dewetting and breaks up below a critical thickness. De Gennes et al. [30]
discussed and summarized different kinds of dewetting phenomena. For thin films (thickness smaller
than 1 μm), long-range forces (van der Waals forces considered in our paper) play a prominent
role, resulting in spinodal dewetting. Consequently, a liquid sheet on a solid/liquid substrate
spontaneously ruptures into a random array of droplets driven by spinodal dewetting instability
(solid substrate by Reiter [31,32], Brochard-Wyart et al. [33], Sharma et al. [34], Reiter et al. [35];
liquid substrate by Brochard-Wyart et al. [36]).

Therefore, a physical mechanism of this filamentation instability has been proposed to consider
both van der Waals forces and stretching effect using a simplified model of a stretching three-layer
fiber (a thin sheet sandwiched between the same surrounding viscous fluids), and the theoretical
results agree with experiments remarkably [37]. This theory is mainly based on two assumptions.
One assumption is “planar sheets”: during the thermal drawing, thickness of the sandwiched thin
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sheets is much smaller than the radii (the radii of interfaces are of centimeter scale at the inlet, while
the thickness of a thin sheet is less than 10 μm and the stretching length is larger than 10 cm [26,28]),
and the multilayer cylindrical sheets can be assumed as multilayer planar sheets by neglecting
curvature effect to focus on the dewetting instability. The other is “infinity outermost layers”: the
outermost high viscous polymer layers are much thicker than the sandwiched thin sheets, and two
outermost polymer layers can be assumed extending to infinity as surrounding fluids.

To thoroughly understand the instability of the composite nanostructures, it is necessary to study
the instability for multilayer or multifluid systems during thermal drawing. The designed multilayer
fiber is drawn over a length from velocity U0 to the take-up speed Uf . Following the method
in [37,38], the total growth of perturbations can be obtained by integrating the local perturbation
growth rate along the whole stretching region. Thus, the dewetting instability of a multilayer fiber
flowing at a velocity U is indispensable before combining the stretching effect. Mathematically,
under the aforementioned assumptions of planar sheets and infinity outermost layers [37], a N-layer
fiber can be simplified to a model of N-layer planar sheets, where (N − 2) layer thin sheets are
sandwiched by the first and N th layer fluids as surrounding fluids.

In this paper, the linear analysis of dewetting instability is further generalized to be practicable
for multilayer planar sheets with arbitrary thicknesses, viscosities, densities, and surface tensions. In
Sec. II, a mathematical model of linear analysis for the N-layer viscous fluids problem is presented.
In Sec. III, the model is validated by comparing to known analytical results of previous work.
Then three-layer and multilayer problems are thoroughly discussed in Secs. IV and V, respectively.
In Sec. VI, the application of controlling dewetting instability (e.g., suppressing or enhancing the
instability) for fiber drawing is explored. We conclude with an outlook in the last section for future
work on dewetting instability in the composite nanostructures.

II. MATHEMATICAL MODEL

A. Governing equations and interfacial conditions

Here we consider two-dimensional multifluid sheets. The coordinates are chosen so that the z axis
is parallel to the direction of the liquid sheet flow, and the y axis is parallel to the thickness, with
its origin located at the middle plane as shown in Fig. 1. The total number of viscous fluid layers
is N , the viscosity of the jth layer is μ j , and its thickness is Hj with the subscript j = 1, 2, . . . , N
denoting the jth layer. The first ( j = 1) layer and the N th layer are the outermost ones (much
thicker than sandwiched thin sheets, assumed extending to infinity), so we set H1 = HN = +∞.
The governing equations of this flow are

∂u j

∂t
+ (u j · ∇)u j = − 1

ρ j
∇p j + 1

ρ j
∇ · τ j, (1)

∇ · u j = 0, (2)

where the velocity u j = (v j,w j ), ∇ = (∂/∂y, ∂/∂z), pj is the pressure, ρ j is the density, and τ j =
μ j[∇u j + (∇u j )T ] is the viscous shear stress tensor.

The solutions of the above equations satisfy the interfacial coupling conditions on the interfaces
y = Y (i)(z, t ), where the superscript 1 � i � N − 1 means the ith interface between the i and i + 1
fluid layers, i.e., the thickness Hi+1 = Y (i+1) − Y (i). The unit normal vector and the unit tangential
vectors at the ith interface are n(i) and t (i), respectively. Four interfacial coupling conditions are as
below: the first two are kinematic conditions, while the last two are dynamic conditions. First, the
velocity component normal to the interface is continuous across the interface, i.e.,

n(i) · ui = n(i) · ui+1 = DY (i)

Dt
= ∂Y (i)

∂t
+ (ui · ∇)Y (i) at y = Y (i)(z, t ). (3)
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FIG. 1. Schematic of the multilayer planar sheets. (a) N layers and corresponding interfaces Y (i), viscosities
μi, and interfacial tensions γ (i) with perfect parallel geometry. (b) Small perturbations are introduced to analyze
their growth with linear stability analysis, here sinuous mode perturbation in the second layer (or at the first and
second interface), while varicose mode perturbation in the (N − 1)th layer [or at the (N − 2)th and (N − 1)th
interface].

Second, the tangential component of the velocity is continuous at the interface due to the no-slip
condition:

ui · t (i) = ui+1 · t (i) at y = Y (i)(z, t ). (4)

Third, the tangential stress of the liquid sheet should be continuous at the interfaces:

n(i) · τ i · t (i) = n(i) · τ i+1 · t (i) at y = Y (i)(x, z, t ). (5)

Finally, the normal surface stresses on both sides of the interface, including the pressure jump across
the interface due to surface tension, are balanced:

pi − n(i) · (τ i − τ i+1) · n(i) − pi+1 = γ (i)κ (i) − dV (Hi+1)

dHi+1
+ dV (Hi )

dHi
at y = Y (i)(z, t ), (6)

where κ (i)(x, z, t ) is the mean curvature of the interface and can be calculated directly from the
vector n(i) of the interface by κ (i) = ∇ · n(i). The van der Waals forces from the ith layer can be
introduced by the potential energy per unit area V (Hi ) as a function of thickness Hi. A typical
representation for the potential Vi is given with a Hamaker constant Ai [30]:

V (Hi ) = − Ai

12πH2
i

. (7)

Since van der Waals forces are long-range intermolecular forces and decay rapidly with distances,
for each interface, only the interactions with its two nearest interfaces are considered to simplify the
model.

B. Primary flow in steady state

In the steady state, due to the no-slip interfacial conditions of viscous fluids, all layers of fluids
flow downstream at a constant velocity ū j = (0,U ). Consequently, the stress tensors in steady state
are also τ̄ j = 0. The interfaces of the planar multifluid sheet in the steady state are parallel to the
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z direction at y = Y (i). Thus, the corresponding normal and tangential vectors are n̄(i) = (1, 0) and
t̄ (i) = (0, 1).

C. Perturbed state

To carry out a linear stability analysis, this state is disturbed by small perturbations. The
dependent variables, for example, the pressures, velocities, and gas-liquid interface, can each
be presented as the sum of the value found in the undisturbed steady state plus the unsteady
perturbation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u j

p j

τ j

Y (i)

n(i)

t (i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ū j

p̄ j

τ̄ j

Ȳ (i)

n̄(i)

t̄ (i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ũ j

p̃ j

τ̃ j

Ỹ (i)

ñ(i)

t̃ (i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Substituting Eq. (8) into the governing equations (1) and (2) and the boundary conditions (3)–(6),
the following linearized equations are obtained by neglecting the nonlinear terms:

∂ũ j

∂t
+ U

∂ũ j

∂z
= − 1

ρ j
∇ p̃ j + μ j

ρ j
∇2ũ j, (9)

∇ · ũ j = 0, (10)

ũi · n̄(i) = ũi+1 · n̄(i) = ∂Ỹ (i)

∂t
at y = Ȳ (i)(x, z, t ), (11)

ũi · t̄ (i) = ũi+1 · t̄ (i) at y = Ȳ (i)(x, z, t ), (12)

n̄(i) · τ̃ i · t̄ (i) = n̄(i) · τ̃ i+1 · t̄ (i) at y = Ȳ (i)(x, z, t ), (13)

p̃i − n̄(i) · (τ̃ i − τ̃ i+1) · n̄(i) − p̃i+1 = −γ (i) ∂
2Ỹ (i)

∂z2
+ Ai+1H̃i+1

2πH4
i+1

− AiH̃i

2πH4
i

at y = Ȳ (i)(z, t ).

(14)

Here κ̃ (i) = ∇ · ñ(i) = −∂2Ỹ (i)/∂z2 is used in the last interfacial coupling condition (14). Moreover,
according to the condition (14) the perturbations of van der Waals forces are proportional to 1/H4,
therefore it is reasonable to only consider the interactions with its two nearest interfaces for each
interface [the interaction between (i − 2)th and ith interfaces proportional to 1/(Hi−1 + Hi )4 is
much smaller, about 0.0625 × (1/H4

i ) at Hi−1 ∼ Hi].

D. Dispersion relation

To solve Eqs. (9)–(14), the stream function φ̃ j is introduced here:

ṽ j = −∂φ̃ j

∂z
, w̃ j = ∂φ̃ j

∂y
. (15)
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Substituting the stream function (15) into the linearized equation (9) and then eliminating the
pressure term yields the following equation:

∇2

(
∇2 − ρ j

μ j

∂

∂t

)
φ̃ j = 0. (16)

In linear instability analysis, the perturbations are in the form expσ t+ikz, where a real number k is the
perturbation wave number and the real part of σ is the exponential growth rate ω, i.e., ω = Re(σ ).
Substituting φ̃ j = �̃ jexpσ t+ikz into Eq. (16) yields

(
d2

dz2
− k2

)(
d2

dz2
− l2

j

)
�̃ j = 0, (17)

where l2
j = k2 + ρ j (σ + ikU )/μ j . Thus, the general solution of Eq. (17) is

�̃ j = c1, je
ky + c2, je

−ky + c3, je
l j y + c4, je

−l j y. (18)

Then, the velocity of perturbations becomes

ũ j =
[

ṽ j

w̃ j

]
=

[
Ṽj

W̃j

]
e(σ t+ikz) =

[
ik(c1, jeky + c2, je−ky + c3, jel j y + c4, je−l j y)

−k(c1, jeky − c2, je−ky) − l j (c3, jel j y − c4, je−l j y)

]
e(σ t+ikz). (19)

Then the pressure can also be obtained from the z-component momentum equation:

p̃ j = −iρ jσU (c1, je
ky − c2, je

−ky)e(σ t+ikz), (20)

where σU = (σ + ikU ).
The integral constants c1, j, c2, j, c3, j, c4, j can be solved by substituting the velocity and pressure

expressions (19) and (20) into the interfacial coupling conditions (11)–(14). After some algebraic
manipulation, the linear equation set about these integral constants can be transformed into the
matrix form:[

Ai,i − 1

σ

(
γ (i)k2 − Ai

2πH4
i

− Ai+1

2πH4
i+1

)
Bi

]
ci −

(
Ai,i+1 + 1

σ

Ai+1

2πH4
i+1

Bi+1

)
ci+1

− 1

σ

Ai

2πH4
i

Bi−1ci−1 = 0, (21)

where ci = (c1,i, c2,i, c3,i, c4,i )T . Additionally, Ai, j and Bi are 4 × 4 matrices as below:

Ai, j =

⎡
⎢⎢⎢⎣

ekY (i)
e−kY (i)

el jY
(i)

e−l jY
(i)

kekY (i) −ke−kY (i)
l jel jY

(i) −l je−l jY
(i)

2μ jk2ekY (i)
2μ jk2e−kY (i)

μ j

(
k2 + l2

j

)
el jY

(i)
μ j

(
k2 + l2

j

)
e−l jY

(i)

−(iρ jσU + 2ik2μ j )ekY (i)
(iρ jσU + 2ik2μ j )e−kY (i) −2ikl jμ jel jY

(i)
2ikl jμ je−l jY

(i)

⎤
⎥⎥⎥⎦,

(22)

Bi = ik

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

ekY (i)
e−kY (i)

eliY (i)
e−liY (i)

⎤
⎥⎥⎦. (23)

Expanding the matrix equation (21) to all the N − 1 interfaces yields the final matrix equation

M (N )C = 0, (24)
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for the integral constants vector C = (c1,1, c3,1, cT
2 , cT

3 , . . . , cT
N−1, c2,N , c4,N )T , where the matrix

M (N ) is a 4N × 4N matrix as

M (N ) = M (N )
1 − 1

σ
M (N )

2 =

⎡
⎢⎢⎢⎢⎢⎣

Ã1,1 −A1,2

A2,2 −A2,3

. . .
. . .

AN−2,N−2 −AN−2,N−1

AN−1,N−1 −ÃN−1,N

⎤
⎥⎥⎥⎥⎥⎦

− 1

σ

⎡
⎢⎢⎢⎢⎢⎣

b1B̃1 a2B2

a2B̃1 b2B2 a3B3

. . .
. . .

aN−2BN−3 bN−2BN−2 aN−1BN−1

aN−1BN−2 bN−1BN−1 aN B̃N

⎤
⎥⎥⎥⎥⎥⎦

,

(25)

where ai = Ai/(2πH4
i ) and bi = (γ (i)k2 − ai − ai+1). Since the first layer and last layer fluids

extend to infinity, we have a1 = 0 and aN = 0. Moreover, there is one more boundary condition
that perturbations of velocity and pressure should be finite at y → −∞ and +∞, i.e., c2,1 = c4,1 =
c1,N = c3,N = 0. Therefore, Ã1,1 and B̃1 are the first and third columns of A1,1 and B1, and ÃN−1,N

and B̃N are the second and fourth columns of AN−1,N and B1.
To obtain a nonzero solution of C, the coefficient matrix M (N ) should be singular:

det(M (N ) ) = 0. (26)

This root-finding problem can be transformed to an eigenvalue problem by exploiting the matrix
structure of M:

M · C = 0 ⇐⇒ M2(k, σ ) · C = σM1(k, σ ) · C. (27)

Since there is an unknown σ in li, the coefficient matrices M1 and M2 are dependent on both k and
σ , i.e., they cannot be calculated at a given wave number k. This kind of eigenmatrix equation is
called the “nonlinear eigenproblem,” and some numerical iteration methods have been built to solve
this problem [39–43].

E. Simplification for Stokes problems

For Stokes problems, the linearized momentum equation (9) is simplified by the one without the
inertia term (including the time derivative term):

∇ p̃ j = μ j∇2ũ j . (28)

Other linearized equations [Eqs. (10)–(14)] still work for Stokes problems. By substituting the
stream function �̃, the ordinary difference equation (17) would be

(
d2

dz2
− k2

)2

�̃ j = 0. (29)

Thus, the solutions of Eq. (29) are

�̃ j = c1, je
ky + c2, je

−ky + c3, jyeky + c4, jye−ky. (30)
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Then similarly, the velocity perturbations

ũ j =
[

ṽ j

w̃ j

]
=

[
Ṽj

W̃j

]
e(σ t+ikz)

=
[

ik(c1, jeky + c2, je−ky + c3, jyeky + c4, jye−ky)
−(kc1, j + c3, j + kyc3, j )eky − (−kc2, j + c4, j − kyc4, j )e−ky

]
e(σ t+ikz). (31)

The pressure perturbation can be obtained as

p̃ j = 2μ j ik(c3, je
ky + c4, je

−ky)e(σ t+ikz). (32)

After substituting Eqs. (19) and (20) into the interfacial coupling conditions (11)–(14) and rewriting
in matrix form, we can obtain the same determinant equation (26) but the matrices Ai, j and Bi are

Ai, j =

⎡
⎢⎢⎢⎣

ekY (i)
e−kY (i)

Y (i)ekY (i)
Y (i)e−kY (i)

kekY (i) −ke−kY (i)
(1 + kY (i) )ekY (i)

(1 − kY (i) )e−kY (i)

μ jk2ekY (i)
μ jk2e−kY (i)

μ jk(1 + kY (i) )ekY (i) −μ jk(1 − kY (i) )e−kY (i)

−2μ j ik2ekY (i)
2μ j ik2e−kY (i) −2μ j ik2Y (i)ekY (i)

2μ j ik2Y (i)e−kY (i)

⎤
⎥⎥⎥⎦, (33)

Bi = ik

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

ekY (i)
e−kY (i)

Y (i)ekY (i)
Y (i)e−kY (i)

⎤
⎥⎥⎦. (34)

The expressions (33) and (34) could also be deduced from Eqs. (22) and (23) of matrices Ai, j and
Bi for Navier-Stokes flow by taking the limit ρ j → 0. The straightforward substitution of ρ j = 0
in (22) and (23) yields dependent columns (the third column corresponding to the first column, the
fourth column corresponding to the second column). To avoid this problem, we could adopt the
difference between the corresponding two columns in the limit l j → k, i.e., their derivatives with
respect to l j of third and fourth columns at l j = k, such as d (el jY i

)/dl j |l j=k = Y iekY i
. This procedure

is equivalent to the one suggested by Tomotika [44].
It is different from the Navier-Stokes problem in that the matrices Ai, j and Bi for the Stokes

problem are only dependent on the wave number k, as well as the matrices M1 and M2 consequently.
And then the nonlinear eigenvalue problem (27) can be simplified to a generalized eigenvalue
problem:

M2(k) · C = σM1(k) · C. (35)

Here the matrix M1(k) is nonsingular, so this generalized eigenvalue problem is typically well
conditioned and can be solved via available numerical methods in LAPACK [45]. LAPACK has been
incorporated into many current mathematical softwares; the generalized eigenvalue problem (35)
can be solved directly for a given wave number k. Since the Reynolds number Re � 1 [26,28] in
the filamentation instability, Eqs. (25) and (33)–(35) for Stokes problems are used in Secs. IV and V
for simplicity.

F. The eigenamplitude and most unstable mode

The generalized eigenvalue problem (35) has N − 1 roots σn(k) (n = 1, 2, . . . , N − 1). For each
root σn, the integral constants vector C is obtained from Eq. (26), and then the initial perturbation
amplitudes ε(i) (Ỹ (i) = ε(i)expσ t+ikz) on the ith interface can be calculated by ε(i) = Ṽi/σn from
Eqs. (11) and (19). The initial perturbation amplitudes of all interfaces are described by a vector
ε = [ε(1), ε(2), . . . , ε(N−1)] (ε is normalized to ‖ε‖ = 1), which is called the “eigenamplitudes” of
frequency σn [27].
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The growth rate of perturbations is the real part ωn = Re(σn). If the growth rate ωn > 0, then the
mode is unstable. For a wave number k, there are (N − 1) growth rates for a N-layer problem. It
is assumed the instability is dominated by the maximum growth rate, ωm = maxn,k (ωn(k)), called
the most unstable mode. And the corresponding wave number and eigenamplitudes are km and
εm = (ε(1)

m , ε(2)
m , . . . , ε(N−1)

m ), respectively.
The growth rate ωn depends on the viscosity μ j , the thickness Hj , the Hamaker number Aj , the

interfacial tension γ (i), and the wave number k. According to the Buckingham π theorem [46],
dimensionless growth �n = fct(η j, Hj/H2, α j, λ

(i), K ) where

�n = ωnμ2H2

γ (1)
, η j = μ j

μ2
, α j = Aj

2πH2
2 γ (1)

, λ(i) = γ (i)

γ (1)
, K = kH2. (36)

η j is the viscosity ratio, α j is the ratio of van der Waals forces to interfacial tension, λ(i) is the
interfacial tension ratio, and K is the dimensionless wave number.

III. MODEL VALIDATION

In this section, our N-layer linear instability model is compared with known analytical results in
various cases derived by other researchers as a check validation. At N = 3 and the same surrounding
fluids μ1 = μ3, γ

(1) = γ (2), the determinant equation (26) has two solutions:

∣∣∣∣∣∣∣∣

1 1 1 1
k l1 −k coth(kH2/2) −l2 coth(l2H2/2)

2μ1k2 μ1
(
k2 + l2

1

)
2μ2k2 μ2

(
k2 + l2

2

)
F1 F2 F3 coth(kH2/2) F4 coth(l2H2/2)

∣∣∣∣∣∣∣∣
= 0 (37)

for the varicose mode, and

∣∣∣∣∣∣∣∣

1 1 1 1
k l1 −k tanh(kH2/2) −l2 tanh(l2H2/2)

2μ1k2 μ1
(
k2 + l2

1

)
2μ2k2 μ2

(
k2 + l2

2

)
F1 F2 F3 tanh(kH2/2) F4 tanh(l2H2/2)

∣∣∣∣∣∣∣∣
= 0 (38)

for the sinuous mode, where

F1 = −(
ρ1σ

2
U + 2μ1k2σU + γ effk3), F2 = −(2μ1kl1σU + γ effk3),

F3 = (
ρ2σ

2
U + 2μ2k2σU

)
, F4 = 2μ2kl2σU , γ eff = γ (1) − A2

k2πH4
2

.

Since the perturbed sheet thickness keeps constant for the same surrounding fluids case at N = 3
in sinuous mode, the van der Waals interaction term in γ eff would disappear, i.e., γ eff → γ (1) in
sinuous mode.

A. Navier-Stokes cases without van der Waals forces at N = 3

When the surrounding fluids are inviscid μ1 = μ3 = 0, there is no eliy nor e−liy term for the
velocity perturbation of the surrounding fluids and the velocity continuous on the interfaces is no
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longer applicable. Thus, Eqs. (37) and (38) become
∣∣∣∣∣∣

1 1 1
0 2μ2k2 μ2

(
k2 + l2

2

)
−(

ρ1σ
2
U + γ effk3

) (
ρ2σ

2
U + 2μ2k2σU

)
coth(kH2/2) 2μ2kl2σU coth(l2H2/2)

∣∣∣∣∣∣ = 0,


⇒ μ2ν2
(
k2 + l2

2

)2
coth

(
kH2

2

)
− 4μ2ν2k3l2 coth

(
l2H2

2

)
+ ρ1σ

2
U + γ effk3 = 0, (39)

and ∣∣∣∣∣∣
1 1 1
0 2μ2k2 μ2

(
k2 + l2

2

)
−(

ρ1σ
2
U + γ (1)k3

) (
ρ2σ

2
U + 2μ2k2σU

)
tanh(kH2/2) 2μ2kl2σU tanh(l2H2/2)

∣∣∣∣∣∣ = 0,


⇒ μ2ν2(k2 + l2
2 )2 tanh

(
kH2

2

)
− 4μ2ν2k3l2 tanh

(
l2H2

2

)
+ ρ1σ

2
U + γ (1)k3 = 0, (40)

where ν2 = μ2/ρ2 is the kinematic viscosity. After neglecting the van der Waals interactions γ eff →
γ (1), Eqs. (39) and (40) are identical with Li’s results for viscous sheets moving in a gas [8]. When
the sandwiched sheet is also inviscid μ1 = μ2 = μ3 = 0, the dispersion relations (39) and (40) can
be further simplified into

σ 2
U

[
ρ1 + ρ2 coth

(
kH2

2

)]
+ γ (1)k3 = 0, (41)

and

σ 2
U

[
ρ1 + ρ2 tanh

(
kH2

2

)]
+ γ (1)k3 = 0, (42)

which are exactly the equations derived by Squire [6] for inviscid sheets.

B. Same surrounding fluids for Stokes problem at N = 3

The dewetting instability of a viscous sheet sandwiched by another viscous fluid was studied
by Liang [47] and Xu et al. [37]. Setting μ1 = μ3, γ

(1) = γ (2) and solving the determinant
equation (35) in the Stokes region, we can obtain one solution corresponding with their results:

σ = −γ effk

2

μ2[cosh(kH2) − 1] + μ1[sinh(kH2) − kH2]

μ2
2[sinh(kH2) + kH2] + 2μ1μ2 cosh(kH2) + μ2

1[sinh(kH2) − kH2]
, (43)

where γ eff = γ (1) − A2

k2πH4
2

is the effective interface tension including van der Waals forces. It

is noted that the dispersion relation (43) corresponds to the varicose mode (ε(1) = −ε(2)). As
mentioned above for the same surrounding fluids case at N = 3 for the Navier-Stokes problem,
the van der Waals interaction term in sinuous mode (ε(1) = ε(2)) for the Stokes problem would
disappear. The dispersion relation in sinuous mode for the Stokes problem only has negative growth
rate (not presented here), where the planar sheet is stabilized by the capillary forces.

IV. THREE-LAYER (N = 3) CASE

In this section, we study the three-layer problem; a thin sheet (fluid 2) is sandwiched by fluid 1
and fluid 3. The surrounding fluids 1 and 3 could be either the same or different.
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FIG. 2. N = 3 with the same surrounding fluids. (a) Growth rate � vs wave number K (α2 = 1.6, η1 = 1).
(b) Maximum growth rate �m (solid line) and its corresponding wave number Km (dashed line) dependent on
dimensionless ratio α of van der Waals forces to interfacial tension (η1 = 1).

A. The same surrounding fluids

When the surrounding fluids are the same η1 = η3, λ
(2) = 1, the dispersion relation (43) between

the growth rate ω and the wave number k presented in Sec. III B can be nondimensionlized to

�(K, α2, η1) = 2α2 − K2

2K
× η1(sinh K − K ) + (cosh K − 1)

η2
1(sinh K − K ) + 2η1 cosh K + (sinh K + K )

. (44)

The growth rate � is associated with wave number K at α2 = 1.6, η1 = 1 as seen in Fig. 2(a), and
there is a maximum growth rate �m with the most dangerous wave number Km. As wave number
K → 0, from Eq. (44), the growth rate �(K, α2, η1) ∼ α2K/(8πη1) → 0. To further survey the
effect of van der Waals forces, the maximum growth rate �m and its corresponding wave number
Km as a function of α2 at viscosity ratio η1 = 1 is shown in Fig. 2(b). Growth rate �m increases with
α2, and van der Waals forces become dominant and drive the dewetting instability [37].

Rather than the viscosity ratio η1 = 1 in Fig. 2, the effect of this viscosity ratio η1 on the
maximum growth rate �m at α2 = 0.1 is presented in Fig. 3. Obviously, the increasing viscosity
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FIG. 3. N = 3 with the same surrounding fluids: maximum growth rate �m vs the viscosity ratio η1 at
α2 = 0.1.
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ratio η1 decreases the growth rate �m, as a stabilizing factor. When the viscosity ratio η1 � 1,

� = 2α2 − K2

2K
× (cosh K − 1)

(sinh K + K )
at η1 → 0

with a maximum limit of growth rate �m → 0.025, i.e., the surrounding fluids 1 and 3 become
inviscid (the “inviscid” limit). On the other hand, when the viscosity ratio η1 � 1,

� = 2α2 − K2

2K
× 1

η1
at η1 → ∞,

with the growth rate decreasing as η1 increases (� ∼ 1/η1) and then the liquid sheet would be stable
when the viscosity of surrounding fluids is infinitely large (the “solid” limit).

B. Different surrounding fluids

For this case, it could be different viscosity (η1 �= η3, λ
(2) = 1), different interface tension

(η1 = η3, λ
(2) �= 1), or different viscosity and interface tension (η1 �= η3, λ

(2) �= 1). In addition,
compared to the same surrounding fluids case, the eigenamplitudes of two solutions would no longer
be ε(1) = ε(2) (sinuous) and ε(1) = −ε(2) (varicose) where the absolute values of amplitudes are
different. Following Li’s work [16], one solution is called the “para-sinuous” mode (when phase
difference between two interfaces is close to zero, ε(1)ε(2) > 0) and the other is the “para-varicose”
mode (when phase difference between two interfaces is close to π , ε(1)ε(2) < 0). For the dewetting
instability, the destabilizing van der Waals forces are proportional to the thickness perturbation
H̃ = ε(1) − ε(2). From numerical calculations, it is found there are also two solutions: one positive
growth rate ω corresponding to the para-varicose mode with larger thickness perturbations, and the
other negative ω corresponding to the para-sinuous mode. In the para-sinuous mode, the calculated
eigenamplitudes ε(1) ≈ ε(2), and then the thickness perturbation H̃ = ε(1) − ε(2) is very small. The
capillary forces still dominate and stabilize the planar sheets in the para-sinuous mode. Thus, only
the solution with a positive growth rate in para-varicose mode will be presented in this subsection.

1. Different viscosity but the same interfacial tension (η1 �= η3, λ(2) = 1)

Figure 4(a) shows the growth rates � versus the wave number K for several pairs of viscosity
ratio η1 and η3 (α2 = 0.1). It is clear that larger viscosity ratio (η2 or η3) decreases the growth rate
and the unstable wave-number range. Further, the dependence of the maximum growth rate �m on
the viscosity ratio η3 while the other viscosity ratio is fixed at η1 = 1 and 10 (α2 = 0.1) is presented
in Fig. 4(b). Again, the increasing viscosity ratio η3 destabilizes the sheets with a smaller growth
rate �m. The eigenamplitude ratio χ = ε(1)/ε(2) in para-varicose mode at η1 = 1, η3 = 10 is shown
in Fig. 4(c), and the eigenamplitude ratio χm corresponds to the maximum growth rate (Km,�m).
The dashed line in Fig. 4(c) is the eigenamplitude ratio for the same surrounding fluids (η1 = η3 = 1
and 10), recovering the dominance of varicose mode for the same surrounding fluids case. To study
the effect of viscosity ratio, the eigenamplitude ratio χm versus the ratio η3 is plotted in Fig. 4(d).
The eigenamplitude ratio χm becomes larger as the viscosity ratio η3 increases.

It is noted, compared to the same surrounding fluids case in Fig. 2, that the growth rate �m

reaches the minimum at η3 → ∞ (solid limit) besides the maximum value at η3 → 0 (inviscid
limit). When the viscosity of fluid 3 is very high, η3 � 1, the eigenamplitude ratio χm → ∞,
denoting that there is almost no perturbation at interface 2 (between fluid 2 and fluid 3) compared to
the perturbations at interface 1 (between fluid 1 and fluid 2). At this limit region, perturbations only
appear at the interface between fluids 1 and 2, where the extremely viscous fluid 3 can be assumed
as a solid media (called the solid limit). At the inviscid limit η3 � 1, the eigenamplitude ratio χm

reaches a limit, where the thin sheet 2 seems sandwiched by the fluid 1 and an inviscid gas. For both
solid limit η3 � 1 and inviscid limit η3 � 1, the growth rate and corresponding eigenamplitudes
are determined by the other surrounding fluid viscosity η1.
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FIG. 4. N = 3 with surrounding fluids of different viscosity (η1 �= η3, λ
(2) = 1, α2 = 0.1). (a) Growth rate

� vs wave number K at several pairs of viscosity ratio η1 and η3. (b) Maximum growth rate �m dependent on
the viscosity ratio η3 at different viscosity ratio η1 = 1 and η1 = 10. (c) Eigenamplitude ratio χ as a function
of wave number K at η1 = 1, η3 = 10 (solid line) and η1 = η3 (dashed line). (d) Eigenamplitude ratio χm

corresponding to maximum growth rate �m in Fig. 4(b), and the inset for the zoom-in view for 10−3 < η3 < 10.

2. The same viscosity but different interfacial tension (η1 = η3, λ(2) �= 1)

Let us consider the case where the surrounding viscosities η1 = η3 but the interfacial tension of
two interfaces γ (1) �= γ (2) (i.e. λ(2) �= 1). As shown in Fig. 5(a), the growth rate �m decreases as the
interfacial tension ratio λ(2) increases, suggesting again the interfacial tension as a stabilizing factor.
The eigenamplitude ratios χm corresponding to the maximum growth rate �m at different interfacial
tension ratios λ(2) are presented in Fig. 5(b). Obviously, a larger interfacial tension ratio λ(2) yields
a larger eigenamplitude ratio |χm|.

The more general case η1 �= η3, λ
(2) �= 1 is the combination of the above cases η1 �= η3, λ

(2) = 1
and η1 = η3, λ

(2) �= 1, where the effects of the viscosity and interfacial tension on the instability
and eigenamplitude are similar to the conclusions in Secs. IV B 1 and IV B 2.

V. FOUR-LAYER (N = 4) CASE

A. Two unstable modes

For the four-layer problem N = 4, an extra layer liquid sheet inside (third layer, i.e., the cladding
layer) and the associated interface make the instability analysis more complicated. The simplest
case with η3 = 1, λ(2) = λ(3) = 1, H3/H2 = 1, α2 = α3 = 0.1 (the properties of cladding fluid 3
corresponding with thin liquid sheet 2) is taken as the reference case. In Fig. 6(a), the growth rate
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FIG. 5. N = 3 with surrounding fluids of different interfacial tension (η1 = η3, λ
(2) �= 1, α2 = 0.1).

(a) Maximum growth rate �m dependent on the interfacial tension ratio λ(2). (b) Eigenamplitude ratio χm

corresponding to maximum growth rate �m in Fig. 5(a).

� versus wave number K of this reference case at surrounding fluids viscosities η1 = η4 = 10 is
plotted. In contrast to the three-layer problem, there are two positive solutions of growth rate �,
and solution 1 and 2 are, respectively, indicated by the dark and gray line in Fig. 6(a). At smaller
wave number K < Kt , the solution 1 is larger; but at larger wave number K > Kt the other solution
2 becomes larger than the solution 1. The eigenamplitudes corresponding to the larger growth rate
[the solid line in Fig. 6(a)] are shown in Fig. 6(b).

For the solution 1, the eigenamplitudes (ε(1) = −ε(3), ε(2) ≈ 0) imply that the perturbation
amplitude at the second interface is negligible, and then layer 2 and layer 3 can be treated as
a new integrated layer. As the amplitudes at the first and third interface are opposite, the para-
varicose mode is for this new integrated layer (mode A). For the solution 2, the eigenamplitudes
(ε(1) = ε(3) ≈ −0.4, ε(2) ≈ 0.8), the para-varicose mode is for both second and third layer thin
sheets (mode B). As wave number K increases to larger than Kt in this case, the dominating mode
changes from mode A to mode B.
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FIG. 6. N = 4 four-layer reference case at η3 = 1, λ(2) = λ(3) = 1, H3/H2 = 1, α2 = α3 = 0.1 and sur-
rounding fluids η1 = η4 = 10. (a) Growth rate � vs wave number K . (b) Eigenamplitudes ε corresponding
to growth rate � in Fig. 6(a). With increasing wave number K , the dominating mode changes from mode A to
mode B.
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FIG. 7. Different cladding layer viscosities η3 for the four-layer (N = 4) problem at λ(2) = λ(3) =
1, H3/H2 = 1, α2 = α3 = 0.1 and surrounding fluids η1 = η4 = 10: (a) maximum growth rates �m and
(b) their corresponding eigenamplitudes εm. For η3 < 0.1, “mode D” with eigenamplitudes ε(1)

m ≈ ε(2)
m ≈

−0.5, ε(3)
m ≈ 0.75 dominates the instability; for 0.1 < η3 < 20, mode A with ε(1)

m ≈ −ε(3)
m , ε(2)

m ≈ 0 domi-
nates; for η3 > 100, mode C with ε(1)

m ≈ −0.8, ε(2)
m = ε(3)

m ≈ 0.4 dominates.

B. The effect of third layer viscosity

To study the effect of the cladding layer viscosity (third layer) η3 on the instability, the maximum
growth rate �m as a function of the viscosity ratio η3 at η1 = η4 = 10, α2 = α3 = 0.1, λ(2) =
λ(3) = 1, H3/H2 = 1 is presented in Fig. 7(a). Meanwhile, the eigenamplitudes ε(1)

m , ε(2)
m , and ε(3)

m
corresponding to the maximum growth rate �m are shown in Fig. 7(b).

When fluid 3 is much more viscous than fluid 2 η3 > 100, the growth rate �m is nearly
independent on η3, and its eigenamplitudes ε(1)

m ≈ −0.8, ε(2)
m = ε(3)

m ≈ 0.4 (the para-varicose mode
on the second layer sheet, mode C). At 0.1 < η3 < 20, the maximum growth rate �m decreases as
the viscosity ratio η3 increases and the corresponding eigenamplitudes ε(1)

m ≈ −ε(3)
m , ε(2)

m ≈ 0, i.e.,
mode A dominates the instability.

When fluid 3 is much less viscous η3 < 0.1, the increasing viscosity ratio η3 also decreases
the maximum growth rate �m but more quickly than 0.1 < η3 < 20. Here at η3 < 0.1, the
eigenamplitudes ε(1)

m ≈ ε(2)
m ≈ −0.5, ε(3)

m ≈ 0.75, i.e., the para-varicose mode on the third layer
sheet dominates (mode D).

Thus, at η3 > 100 or η3 < 0.1, the instability is dominated by the para-varicose mode on the
less viscous thin sheet: at η3 > 100, the para-varicose mode on the second layer sheet, the growth
rate �m almost does not change as third layer viscosity η3 further increases (viscosity of the second
sheet fixed here); at η3 < 0.1, the para-varicose mode on the third layer sheet, the growth rate �m

increases as the viscosity ratio η3 decreases.

C. The effect of interfacial tension

To investigate the effect of interfacial tension γ (2) on the interface between the second layer
and the third layer, the maximum growth rate �m as a function of the interfacial tension ratio
λ(2) = γ (2)/γ (1) between first and second interfaces and their corresponding eigenamplitudes
ε(1)

m , ε(2)
m , ε(3)

m are presented in Figs. 8(a) and 8(b) (η1 = η4 = 10, η3 = 1, α2 = α3 = 0.1, λ(3) =
1, H3/H2 = 1). When the interfacial tension γ (2) is smaller than γ (1) and γ (3), i.e., λ(2) < 0.05,
the increasing interfacial tension ration λ(2) stabilizes the sheets with smaller growth rate �m and
the eigenamplitudes ε(1)

m = ε(3)
m < 0, ε(2)

m → 1 (mode E). At λ(2) > 1, the growth rate �m rarely
varies as interfacial tension ratio λ(2) increases and the dominating mode changes to mode A
(ε(1)

m = −ε(3)
m , ε(2)

m ≈ 0).
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FIG. 8. Different interfacial tension λ(2) for the four-layer (N = 4) problem at η3 = 1, λ(3) = 1, H3/H2 =
1, α2 = α3 = 0.1 and surrounding fluids η1 = η4 = 10: (a) maximum growth rates �m and (b) their cor-
responding eigenamplitudes εm. For λ(2) < 0.05, mode E with eigenamplitudes ε(1)

m = ε(3)
m < 0, ε(2)

m → 1
dominates; for λ(2) > 1, mode A with ε(1)

m = −ε(3)
m , ε(2)

m ≈ 0 dominates.

D. The effect of layer thickness

Now let us focus on the effect of the cladding layer thickness H3 on the dewetting instability,
the maximum growth rate �m versus thickness ratio H3/H2 at η1 = η4 = 10, η3 = 1, λ(2) = λ(3) =
1, α2 = 0.1, α3|H3/H2=1 = 0.1 shown in Fig. 9(a). When the thickness ratio H3/H2 is large enough,
van der Waals forces due to the cladding layer H3 can be neglected (i.e., α2 � α3 and α3 � 1).
The growth rate �m approaches the value �m,N=3 of the three-layer problem where the thin sheet
of fluid 2 with thickness H2 is sandwiched by the surrounding fluid 1 and the thick layer sheet
of fluid 3 in Fig. 9(a) and the dominating eigenamplitudes also switch to the para-varicose mode
for a three-layer problem (mode F, ε(1)

m = −ε(2)
m , ε(3)

m ≈ 0) in Fig. 9(b). Thus, when the cladding
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FIG. 9. Different cladding layer thicknesses H3/H2 for the four-layer (N = 4) problem at η3 = 1, λ(2) =
λ(3) = 1, α2 = 0.1, α3|H3/H2=1 = 0.1 and surrounding fluids η1 = η4 = 10. (a) Maximum growth rates �m

(solid line), the three-layer limit (N = 3, η1 = 10, η3 = 1, dashed line), and the slowest growth rate �slow
m

associated with a critical thickness Hcr. (b) The eigenamplitudes εm corresponding to �m. With H3 ∼ H2, mode
A dominates and the growth rate �m is smaller at larger cladding layer thickness H3; with large enough H3/H2,
mode F dominates where van der Waals forces due to the cladding layer H3 can be neglected and the growth
rate �m slowly increases to the limit value �m,N=3 as the thickness H3 increases.
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TABLE I. Controlling instability or the perturbation growth rates through designing various structures for
application of fiber drawing (Hamaker constant of thin sheets Aj ∼ 10−17 J, interfacial tension of interfaces
γ (i) ∼ 10−1 N m−1).

Structure Viscosities (Pa s) Thicknesses (nm) Growth rate ωm (s−1)

PES/As2Se3/PES 105/105/105 ∞/10/∞ 0.703
PSU/Se/PSU 105/1/105 ∞/80/∞ 0.184

PES/As2Se3/PES 105/105/105 ∞/50/∞ 1.33 × 10−3

PES/As2Se3/Se 105/105/1 ∞/50/∞ 2.56 × 10−3

PES/As2Se3/Se/PES 105/105/1/105 ∞/50/50/∞ 0.952

PSU/Se/As2Se3/PSU 105/1/105/105 ∞/30/30/∞ 5.557
PSU/Se/As2Se3/PSU 105/1/105/105 ∞/30Hcr/30/∞ 0.0191
Se/As2Se3/PSU 1/105/105 ∞/30/∞ 0.0191

layer is thick, the N = 4 four-layer problem can be simplified to a three-layer problem. Under this
para-varicose mode for a three-layer problem with large H3, the growth rate �m slowly increases to
the limit value �m,N=3 as the thickness H3 increases.

In contrast, under the instability mode for a four-layer problem with thickness H3 ∼ H2 [here
mode A in Fig. 9(b)], the growth rate �m is smaller at larger cladding layer thickness H3. Thus,
there is a critical thickness of the cladding layer Hcr to yield the slow growth rate �slow

m , as shown
in Fig. 9(a). Similar results about the effect of the cladding layer thickness H3 at other parameters,
such as η3 �= 1 or λ(2) �= 1, can be obtained.

VI. APPLICATIONS OF FIBER DRAWING

Three-layer N = 3 and four-layer N = 4 structures are carefully studied as above, and
these results could provide guidance to design and fabricate more sophisticated functional
micro/nanodevices in fibers and textiles via thermal drawing [23]. Besides material selection of
various viscosity and interfacial tension [26,28,29], here we focus on the design of composite
structure to manipulate this dewetting instability through multilayers and their thicknesses, as
studied in Sec. V and listed in Table I.

First, for N = 3 and the same surrounding viscosity, the inner sheet with higher viscosity should
be thinner so that larger van der Waals forces promote the instability of the thin sheet. For example,
listed in Table I are growth rates for the 10-nm As2Se3 sheet in the PES/As2Se3/PES structure
(α2 = 0.1) and for the 80-nm Se sheet in the PSU/Se/PSU structure (α2 = 0.0016). Indeed, as
mentioned in the introduction for filamentation instability [28], in the PES/As2Se3/PES structure,
the thickness of the As2Se3 sheet should be drawn to less than 10 nm, and in the PSU/Se/PSU
structure Se sheet thickness should be less than 100 nm.

Second, the instability or the perturbation growth rate can be promoted or increased for
high viscous materials, resulting in filamentation of the thin sheet. For example, for the N = 3
PES/As2Se3/PES structure, ωm = 1.33 × 10−3 s−1 for the 50-nm As2Se3 sheet in Table I. An
additional Se layer can enhance the instability growth rate ωm = 0.952 s−1 by nearly three orders
of magnitude, i.e., a N = 4 PES/As2Se3/Se/PES structure with HAs2Se3 = HSe = 50 nm, as shown
in Table I (growth rate much larger than the one in the PES/As2Se3/Se structure with a less viscous
surrounding fluid).

Physically, although less viscous fluid could be used as the surrounding fluids to enhance the
instability, but there is an upper limit of the growth rate (the inviscid limit) by decreasing the
surrounding fluid viscosity according to Figs. 3 and 4(b). It is noted that for N = 4 and H3 ≈ H2

the instability will be dominated by the much less viscous thin sheet, and the growth rate increases
as the viscosity of the cladding layer decreases [Fig. 7(a)]. Clearly, the growth rate �m ≈ 0.015 in
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Fig. 7(a) with cladding layer viscosity η3 = 0.01 at H3 ≈ H2 and N = 4 is larger than corresponding
growth rates at N = 3 with η1 = η3 = 0.01 in Fig. 3(a) and η3 = 0.01 in Fig. 4(b). Thus, a cladding
layer of less viscous fluid with thickness H3 ≈ H2 is better than directly using this less viscous fluid
as a surrounding fluid.

Third, the instability or the perturbation growth rate can be suppressed or reduced for the
less viscous material, preserving the thin sheet or uniform layer structure in the produced fiber.
For example, for the N = 4 PSU/Se/As2Se3/PSU structure with HAs2 Se3 = HSe = 30 nm (ωm =
5.557 s−1) in Table I, although the high viscous As2Se3 layer slightly reduces the perturbation
growth rate, the dewetting instability should be dominated by the less viscous Se layer. To further
suppress the dewetting instability, the thickness of the less Se viscous layer could be increased
to HSe = Hcr × 30 nm to obtain a slow growth rate �slow

m , where the dominating instability mode
would switch to the para-varicose mode for three-layer problem of the high viscous As2Se3 layer
with a much smaller perturbation growth rate in Table I. Here Hcr ≈ 4.4, and growth rate decreases
to ωm = 0.0191 s−1 (nearly the same as its corresponding three-layer case) by around two orders of
magnitude. This makes possible the fabrication of a long fiber including less viscous material with
smaller diameter.

It is noteworthy that in the above analysis for applications of fiber drawing the stretching effect
is not considered. The total growth of perturbations and breakup results during the thermal drawing
process can be obtained by combining the stretching [37,38]. Moreover, nonlinear evolution could
be incorporated to describe the breakup of a stretching sheet. But the linear analysis here is still
informative and helpful for the preform design in fiber drawing to enhance or suppress the instability.

Similar analysis can be expanded to the system with more layers. Especially, a certain thick
layer with its ratio of van der Waals forces to interfacial tension αc � 1 can be considered as
the surrounding fluid for the nearby thin layers. Thus, thick sheet layers can be used as separate
layers to reduce the crosstalk or interference effect between the neighbor layers, and the multilayer
system can be divided to several three-layer, four-layer, or five-layer subproblems to achieve highly
integrated in-fiber composite nanostructures during one thermal-drawing process [28].

VII. DISCUSSIONS AND CONCLUSIONS

More future work can be explored from several aspects.
(1) The Stokes problems are solved in Secs. IV and V, but inertial contributions (including the

time derivative term) to the dewetting instability could be included. A suitable numerical iteration
method should be chosen to solve the nonlinear eigenvalue problem.

(2) Only long-range interactions with the two nearest interfaces for each interface are considered
in this paper, since the perturbations of van der Waals forces are proportional to 1/H4. The
interactions besides the two nearest interfaces can be considered in the analysis to be more accurate.

(3) The non-Newtonian behaviors of the molten materials (such as the viscoelasticity, the shear
thinning or thickening viscosity, or the dependence of viscosity on the temperature), thermal
fluctuations, and spontaneous nucleation can be incorporated into the analysis.

(4) Despite the excellent prediction of the onset instability by the linear analysis, the nonlinear
evolution and stretching effect following the total growth rate method in Javadi et al. [38] and Xu
et al. [37] can be combined in the linear instability analysis, to better study the instability and
breakup in the thermal drawing process.

(5) More complicated geometries could be considered, such as hierarchical textures on the cross
section instead of simple parallel structure [25].

In summary, the linear analysis of dewetting instability is performed for multilayer planar sheets
for various physical parameters, including van der Waals forces, thicknesses, viscosities, and surface
tensions. For the three-layer case, the dewetting instability due to van der Waals forces is dominated
by the para-varicose mode with larger thickness perturbations, in contrast with a planar liquid sheet
moving in a gas where the aerodynamic force dominates the instability and the para-sinuous mode
is more unstable. For the four-layer case, there are several more complicated unstable modes,
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and the maximum growth rate (�m) depends on both fluid properties, and the corresponding
eigenamplitudes can switch among various modes. Particularly, a slowest growth rate (�slow

m ) is
identified at a critical thickness of the cladding layer (Hcr). Additionally, for relevant applications of
fiber drawing, by changing multilayer structure from N = 3 to 4 through introducing an additional
less viscous sheet, the instability can be enhanced, or, by choosing a suitable thickness of a less
viscous sheet, the instability can be reduced.

These results not only shed light on controlling the dewetting instability by material selection
and structure designing, but also provide guidance to achieve functional devices with sophisticated
nanostructures either in a single fiber or in integrated fabrics for large-scale textiles. Our paper might
be also helpful for the multilayer coextrusion process in polymer film production [48–52], where
instability could lead to unexpected holes or breakup altering final properties [53–56] when the
layer thickness is reduced down to nanometer scale. Zhu et al. [57] investigated the hole evolution
and breakup in the dewetting instability by nucleation during multilayer coextrusion based on
Krausch’s [58] and Wang et al.’s [59] work, and pointed out that the dynamics of hole formation
is unaffected by the originating mechanism of film rupture (nucleation or spinodal dewetting). Our
paper for multilayer liquid sheets could not only predict the onset of spinodal dewetting instability
driven by van der Waals forces, but also provide possible methods to suppress this instability during
multilayer coextrusion.
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